Descrição
Recommending music automatically isn’t simply about finding songs similar to what a user is accustomed to listen, but also about suggesting potentially interesting pieces that bear no obvious relationships to a user listen- ing history. This work addresses the problem known as “cold start”, where new songs with no user listening history are added to an existing dataset, and proposes a probabilistic model for inference of users listening interest on newly added songs based on acoustic content and implicit listening feedback. Experiments using a dataset of selected Bra- zilian popular music show that the proposed method compares favorably to alternative statistical models.